

Measured Components Flows, Pressures, Temperatures, and Gas Properties. 9

Component Interaction

To demonstrate the component interaction, consider an example of one regulator, one pipe, and one customer.

10

The Customer

- Customer has a furnace with a valve that opens and closes to let gas flow to the burner.
- The burner vents to the atmosphere through the "chimney".

11

The Regulator

- The Regulator is connected to a high pressure supply source.
 The Regulator senses downstream pressure and opens and closes to allow gas to flow into the Pipe.

Example Demonstrates... This example demonstrates the interaction between the material and measured components. The presence of steady and unsteady conditions. A basic characteristic of gas flow.

21

Component Interaction

- The opening of the valve at the furnace burner (material) causes the gas to flow (measured).
- The pressure in the pipe (measured) lowers, causing the regulator (material) to open.
 The pipe (material) allows the gas to flow (measured) between the regulator and burner (material).

22

Steady/Unsteady Conditions

- Initially the burner is closed, there is no flow (steady state).
- The burner opens, flow begins (unsteady). The regulator opens, pressure and flows stabilize (steady state).
- The burner closes, the regulator continues to feed (unsteady).
- Finally the regulator closes, no flow (steady state).

23

Gas Flow...

- Let's consider why the gas began to flow in this example...
- The furnace burner is vented to the atmosphere.
- The pressure at the burner opening is the same as the atmosphere basically zero.

50

Solution Method • The error is used to calculate new pipe flows are used to calculate new node pressures. Error >>> $Q_{\text{IN-New}}$, $Q_{\text{OUT-New}}$ $P_{2-\text{New}} = (P_1^2 - (Q_{\text{IN-New}} \times R_{12})^2)^{\text{K}}$ $P_{3-\text{New}} = (P_2^2 - (Q_{\text{OUT-New}} \times R_{23})^2)^{\text{K}}$

Solution Method

- This process is performed for every node in the model.
- The Kirchoff Rule is then checked again and if not satisfied the errors are used to calculate new node pressures.
- This process is repeated again and again...

52

Solution Method

- Each guess and check is referred to as an iteration.
- Iterations are performed until the Kirchoff Rule is satisfied

Or so we say...

53

Solution Method

- Because of the non-linear flow equations an exact solution cannot generally be obtained.
- The Kirchoff Rules cannot exactly be met.
- So, the idea of a tolerance is introduced.

Tolerance	Tolerance	Summary
 The tolerance is used to specify how closely the Kirchoff Rule should be satisfied. It establishes the largest acceptable node "error" for the model solution. 	 Generally node errors start large and get smaller - this is called convergence. The model is said to be "balanced" when the "error" at each node "converges" to less than the tolerance. 	 Network components are interrelated and affect other components. A gas system is a network consisting of material and measured components that can be represented by various mathematical equations.
55	56	57
Summary	Summary	Summary
 Gas moves from high pressure to low pressure - no demand, no flow. Gas flow tends to follow the path of least resistance. Changes in the system start at a steady-state, transition through a dynamic unsteady state to arrive at another steady state. 	 Our modeling will only involve study of the steady state condition. Pipes carry gas, nodes connect pipes, and customers establish demands. 	 The pipes and nodes are related by the pipe flow equations. A trial and error method is used to balance the system. And an exact solution is never achieved.
58	59	60

